Клиент входит в топ-3 крупнейших девелоперских компаний России с совокупным объёмом проектов >17 млн м² и 20 000 сотрудников в штате.
Создание корпоративного сервиса, который позволит с помощью ИИ-агентов автоматически распознавать и категоризировать АПО, распознавать экспертизы от клиента, производить автосверку АПО с экспертизой клиента и заводить дефекты в «Техзоре», исходя из данных.
Затем он:
— сопоставляет новые материалы с ранее обработанными, выделяя совпадающие и новые дефекты,
— формирует ведомость,
— рассчитывает стоимость работ.
Результаты в структурированном виде передаются в «Техзор» — внутреннюю систему фиксации дефектов и ведения карточек — где автоматически создаются карточки дефектов. Затем в веб-интерфейсе пользователь видит, из каких фрагментов текста сформированы поля карточки, и проверяет/подтверждает корректность (при необходимости вносит правки).
Благодаря сквозной автоматизации время обработки снижается, ручная нагрузка уходит, данные становятся единообразными и пригодными для аналитики, а поток досудебных обращений закрывается полностью.
Проект включал 3 релиза MVP общей продолжительностью 3,5 месяца.
Этап 1
Начали с анализа и проектирования и сразу собрали прочный фундамент проекта: согласовали целевую архитектуру и визуализировали её на диаграммах (включая ERD и схемы интеграций), утвердили план по информационной безопасности и развернули каркас инфраструктуры для Dev и Stage.
Параллельно подготовили базу для качества распознавания — собрали эталонный датасет с выверенным балансом АПО и экспертиз и составили стартовые словари дефектов и работ, чтобы метрики дальше считались на одинаковой основе.
На этом основании провели POC на 50 образцах (OCR + LLM/NER), зафиксировали базовые метрики и подняли каркас бэкенда с загрузкой, очередями задач и хранилищем — после чего перешли к ML-разработке.
Сделали работу «сквозной»: пользователь заходит в веб-интерфейс, загружает документы, а система сразу распознаёт данные из АПО и экспертиз. Всё, что нужно поправить или уточнить, редактируется на месте — можно добавлять и удалять дефекты, виды работ, помещения и локализации
Готовый результат выгружается в редактируемые форматы (Excel и Word), а исходники и итоги распознавания надёжно сохраняются в системе, чтобы к ним можно было вернуться и продолжить работу.
Этап 2
На бэкенде мы развернули API для загрузки, надёжное хранилище и очереди задач — чтобы поток документов обрабатывался стабильно и предсказуемо. На этом каркасе собрали ML-пайплайн: OCR, извлечение сущностей (NER) и классификация дефектов/видов работ. Уже на черновой итерации вышли на F1 > 0,82, а результаты проверяются через встроенный модуль сверки.
Чтобы работа была удобной для пользователей, спроектировали UI/UX: подготовили дизайн-систему и прототипы экранов — от загрузки и валидации до сверки и редактирования справочников.
Добавили автоматическую сверку данных между АПО и экспертизами клиента, сформировали документ-сравнение и реализовали его выгрузку.
Для будущей передачи данных во внешние контуры сделали интеграционный адаптер «Техзор» в виде заглушки с формализованными контрактами. Экспорт результатов уже доступен и на этом этапе: реализована первичная выгрузка в Word и Excel.
Этап 3
В третий месяц работ мы завершили функционал: добавили валидацию и редактирование, доработали справочники, реализовали сверку АПО и экспертизы и экспорт ведомостей, вышли на целевые метрики качества на валидации F1 по дефектам и работам выше 0,90, интегрировались с «Техзором» для создания дефектов из системы с целевым SLA API не более 1 секунды на дефект, провели аудит и настроили ретраи, выполнили нагрузочные и проверки безопасности на объёмах порядка 350 документов в месяц и пиках свыше 30 документов в час, а также настроили журналирование.
Реализовали передачу сформированных и подтверждённых пользователем дефектов в «Техзор» через API для автоматического создания карточек и загрузки информации в карточку квартиры.
Финально провели отладку и сдачу: пилотировали решение на реальных данных из ~10 документов, сформировали отчёт по SLA (доступность > 99%) и закрыли инциденты, подготовили руководства пользователя и администратора, регламенты обновления словарей и ML, план on-prem-развёртывания (Helm/Docker, сети, БД) и ввели систему в промышленную эксплуатацию.