Наверняка, вы видели все эти креативы, где у менеджера шесть пальцев на руке, а команда в офисе напоминает инопланетян в костюмах. Попытки использовать нейросети для подготовки рекламных креативов в B2B разбиваются о суровую реальность. В лучшем случае результат просто бесполезен. В худшем — он бьёт по репутации.
И даже если получилось сгенерировать что-то более менее адекватное, креатив может банально не попадать в вашу целевую аудиторию.
Меня зовут Павел. Более 10 лет я работаю в маркетинге и постоянно мониторю современные тенденции. Только за последние несколько лет я успел поработать с ИИ от ChatGPT до Cursor. Я экспериментировал с генерацией изображений и видео.
В статье расскажу, как получать качественный результат при использовании ИИ-инструментов при помощи системного подхода.
Ключевая ошибка — стартовать сразу с написания промптов, пропустив самую важную стадию — стратегию. Нейросеть не знает вашего клиента. Она не слышала возражений от директора по закупкам и не вникала в технические нюансы вашего ПО для логистики. Без этого на выходе — лишь красивая, но бездушная шелуха, которая не резонирует с целевой аудиторией и не закрывает её реальные боли.
Чтобы ИИ начал генерировать не просто контент, а релевантные и продающие сообщения, нужен системный подход. Его основа — не в знании магических промптов, а в слаженной работе отдела маркетинга и продаж.
Маркетологи знают, как упаковать, а продавцы — какие именно «боли», страхи и возражения живут в головах ваших клиентов. Их совместный интеллектуальный продукт — это и есть тот самый фундамент, на котором будет строиться весь ИИ-контент.
Результатом этой коллаборации становится продуктово-рыночная матрица — стратегический документ, который превращает разрозненную информацию в чёткую структуру.
Именно эта матрица становится «источником истины» и подробным техническим заданием для любой нейросети. Она отвечает на главные вопросы: Кому? О чём? И с каким посылом мы говорим?
Шаг 1. Для начала я погружаюсь в нишу. Создаю продуктово-рыночную матрицу.
Шаг 2. На основе матрицы я создаю для каждого сегмента не промпты, а карточки сообщений — детальное ТЗ для будущего контента.
Шаг 3. Готовлю и редактирую промты, на основе матрицы, через ИИ.
Шаг 4. На основе промтов генерирую изображения.
В результате получаю не пачку случайных изображений, а готовый к запуску рекламный пакет, который точечно бьёт в разные сегменты аудитории конкретного проекта и говорит с ними на их языке.